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1. THE ACCOMPANYING CODE PACKAGE

The supplementary materials of this paper contain a code package with
the implementation of the proposed data-driven CNN-based DLOC
method, namely the neural network (NN) architecture to be trained, the
training script, the script that generates the datasets (for training, vali-
dation and testing). To empirically compute the bound, and specifically
for a code implementation of estimation of the chi-square divergence,
see the code package associated with [1].

2. IMPLEMENTATIONMODIFICATIONS

Asmentioned in the paper, we consider the architecture proposed in [2],
and introduce local, though still important, modifications to the code
associated with [2]. Therefore, in the following, we point out and briefly
explain these modifications relative to the original implementation.

2.1. Fusion of the Global Model

The first modification was introduced based on the following observa-
tion. When the outputs of the three sub-models for estimation of range,
azimuth and inclination are concatenated, simply by changing the loss
function to the 3D squared-error in spherical coordinates, the gradients
w.r.t. each coordinate depends on the other two coordinates as well.
Therefore, when the global architecture is trained with this “global” loss,
the set of weights of what was previously a sub-model for estimation of
a single coordinate (e.g., range or azimuth) can no longer be associated
exclusively with that coordinate. In other words, by using the aforemen-
tioned global loss function for training of the direct localization (DLCO)
model, functional interrelations, induced by joint statistical properties,
are being learned.

In particular, there is no need to introduce an additional “merging”
layer of any kind (e.g., a dense layer) in order to enable such functional in-
terrelations, that obviously exist, since one coordinate’s estimate is infor-
mative about the other (e.g., a range estimator can be statistically related
to an azimuth estimator). Therefore, in the current implementation, and
differently from the previously proposed architecture, the concatenated
outputs of the three sub-models, whichwere previously and individually
trained, are defined as the outputs of the globalmodel. Thismodification
appears in the file:

direct localization model weights spherical.py in
the function:

get DLOC model weight spherical

2.2. Average Attenuation Magnitude Normalization

In [2], a relatively simple (3-ray) propagation model was considered. In
this work, we consider a substantially more realistic propagation model,
using Bellhop simulator [3], whichwas developed specifically to generate
more advanced propagationmodels for the underwater acoustic domain.

Working with these richer, more challenging propagation models,
based on our experimental experience we observed that the second mod-
ification (described below), which pertains to a numerical issue, was nec-
essary for the successful training of the NN.

For a given set of environmental parameters (such as the soundspeed
profile), and for a given (fixed) pair of source position and receiver posi-
tion, the Bellhop simulator outputs an impulse response. This impulse
response is the result of an approximated (not necessarily a straight line)
ray propagation model in the form of time delays with associated atten-
uation coefficients. Thus, for a fixed volume of interest that defines (say,
a uniform) a 3D prior over the source’s position, the physical propaga-
tionmodel induces a prior distribution over the attenuation coefficients.
Naturally, the magnitudes, for example, may differ significantly with the
source-receiver pair positions.

From a NN training perspective, we were able to successfully train
the global NN DLOC model when a certain form of this prior, which
is relatively reasonable to obtain, was incorporated into the training pro-
cess. Specifically, based on all the impulse responses from the training
dataset, we computed the average normof all the attenuation coefficients,
and normalize the unit-variance (i.i.d. complex normal) waveform of the
source with this average. In this way, the model is able to learn the direct
localization function approximation over a range of different signal-to-
noise ratio (SNR) values. This modification appears in the files:

train DLOC model script bellhop ID1.py
and

train DLOC model notebook bellhop ID1.ipynb

3. THE BELLHOP SIMULATOR

As mentioned above, to go beyond the 3-ray isovelocity propagation
model, in this work we use the Bellhop simulator [3]. Upon providing
input that includes the source’s and receiver’s position, soundspeed as a
function of depth, bathymetry, and other characterizing parameters that
affect acoustic impulse response, Bellhop returns (among other possible
outputs) a set of time of arrivals and corresponding attenuation ooeffi-
cients, with which an impulse response, of the form used in our signal
model (1), can be simulated.

The code for generating such an impulse response, with the specific
values we have used for the various input parameters, is given in the file:

generate impulse responses via Bellhop.py



The details in this file also define the two environments we consid-
ered inour simulation experiment, namely the setPenv andQenv, denoting
the “true” and “presume” environments, respectively.

The files:
test DLOC model bellhop ID1 ICASSP2023.py
that is also included in this package is for testing the trained NN.

More details about this part of the code, as well as the files for training
the NNs, are given in the supplementary materials of [2].
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